
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 28 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713646857

Microscopic Motion of Atoms in Simple Liquids at Equilibrium and with
Shear Flow
D. M. Heyesa; W. C. Sandbergab

a Department of Chemistry, Royal Holloway and Bedford New College, University of London, Egham,
Surrey, UK b Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory,
Washington, DC, USA

To cite this Article Heyes, D. M. and Sandberg, W. C.(1990) 'Microscopic Motion of Atoms in Simple Liquids at
Equilibrium and with Shear Flow', Physics and Chemistry of Liquids, 22: 1, 31 — 50
To link to this Article: DOI: 10.1080/00319109008036409
URL: http://dx.doi.org/10.1080/00319109008036409

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713646857
http://dx.doi.org/10.1080/00319109008036409
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Phys. Chem. Liq., 1990, Vol. 22, pp. 31-50 
Reprints available directly from the publisher 
Photocopying permitted by license only 

0 1990 Gordon and Breach Science Publishers, SA. 
Printed in the United Kingdom 

MICROSCOPIC MOTION OF ATOMS IN SIMPLE 
LIQUIDS AT EQUILIBRIUM AND WITH 

SHEAR FLOW 

D. M. HEYES and W .  C. SANDBERG? 

Department of Chemistry, Royal Holloway and Bedford New College, 
University of London, Egham, Surrey TW20 OEX, UK. 

(Received 31 January 1990) 

We investigate the microscopic mechanism of atomic motion and local stress relaxation in Lennard-Jones, 
LJ liquids using a new class of correlation functions that emphasise the interplay between an abitrary 
atom in the fluid and its surrounding shells of atoms. We use the linear momenta and stress tensor to 
characterise the time dependence of this interaction. We consider a series of correlation functions that 
give complementary information and build a picture of the single particle and small cluster motion. The 
central particle and tirst shell undergo a reversal in momentum at different times after the ‘collision’ of 
the central particle and its first shell of neighbours. This ‘phase difference’ becomes manifest in the 
subsequent dynamics probed by the new correlation functions. We also consider the effect of a non- 
newtonian shear How on this local dynamical relaxation, using profile biased laminar flow equations of 
motion. In non-newtonian shear flow we find the momentum transfer between particle and cage to be 
less pronounced and occur over a wider time range. 

KEY WORDS: Lennard-Jones interactions, stress tensor, non-Newtonian How. 

1 INTRODUCTION 

Understanding the motion of small groups of atoms in simple fluids has been an 
ongoing application of molecular dynamics computer simulation, MD,  since the 
pioneering work of Rahman,’ (followed up by Franchetti2) and Alder and Wain- 
wright3. In the more recent past some highlights are, for example, a (progessively 
refined) viscoelastic theory of the momentum autocorrelation and momentum trans- 
transfer functions, written in terms of the longitudinal and transverse momentum 
current density correlation functions, developed by Gaskell and co-workers4*’. At a 
more empirical level, single particle trajectories and their relationship with the 
surrounding cage have been analysed directly by MD.  A decomposition of the 
momentum autocorrelation function from particles initially in high and low local 
density conditions showed a more oscillatory appearance in the initially low density 
environment6. Recollision probabilities have also been investigated; recollision with 
the same particle is highly probable’. Haan and others showed that the time evolution 
of the separation of pairs of atoms in a simple fluid satisfied the Smoluchowski’s 

t Permanent address: Laboratory for Computational Physics and Fluid Dynamics, Naval Research 
Laboratory, Washington, DC 20375-5000, USA. 
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32 D. M. HEYES AND W. C. SANDERG 

equation with a potential of mean Two, three and higher particle regroup- 
ings of relevance to stress relaxation in simple fluids have also been considered, both 
implicitly in terms of the local free volumelo and directly”. In the latter study, the 
long-time decay of the shear-stress autocorrelation function is shown to be de- 
termined primarily by a reorientation of the ‘bonds’ connecting the close neighbours. 
Kushick and co-workers showed that the principle role of the attractive forces is to 
enhance the cohesiveness and longevity of the cage, giving rise to a much deeper 
momentum autocorrelation function from enhanced coherence between ‘backscatter- 
ing’ events”. A longitudinal resolution of the momentum transfer cross-correlation 
function showed that at short times transfer of the momentum is primarily in the 
longitudinal direction. As the momentum spreads within the first shell and beyond, 
the contribution from the transverse modes  increase^'^. There have been a number 
of treatments of the momentum autocorrelation function using the generalised 
Langevin equation solved with a variety of prescriptions for the time-dependent 
friction ~oefficient’~. It is clear from treatments of extensive analyses of single particle 
motion in simple fluids” and self-diffusion in simple molecular fluids16 that the 
attractive part of the potential has a strong influence on the molecular diffusion 
mechanism largely through the change in the dynamics of the particle cages. 

These studies, considered overall, reveal that the interaction between the atom 
and its non-stationary cage-the key to any understanding of local dynamical 
relaxation-is still poorly characterised. None of these studies directly addresses this 
correlation. Despite many papers on this subject, there are still important unanswered 
questions. We make further progress with the assistance of a number of new 
specifically designed time correlation functions which probe hitherto unstudied 
aspects of the interplay between the fluid atoms and their cages in simple fluids. It 
is important to look at several correlation functions from the same state point, as a 
single correlation function can often be misleading in promoting a particular view 
of the single particle dynamics. This is because any particular correlation function 
uses one physical property to probe the dynamics. By the analytic formula for this 
property it will weight certain dynamical events more than others. The force 
autocorrelation function, for example, emphasises those points in time when the 
particle is subjected to a large repulsive force. 

2 THEORY AND SIMULATION METHOD 

We define three classes of particle for the purposes of resolving the momenta and 
stress around a central particle. (All N particles in the simulation cell are considered 
as being ‘central’ particles in turn, at each time origin. A time origin is commenced 
each time step.) The central particle or ‘impurity’ we give the generic subscript, 1. 
Particles lying within an annulus of inner and outer radii, I ,  and r,, respectively about 
the central particle at arbitrary time are given the subscript, 2. Particles lying within 
an annulus of inner and outer radii, rb and r,, respectively about the central particle 
are similarly given the subscript, 3. The nearest shell S1 comprised of ‘2’ atoms, has a 
total momentum which is simply the sum of the component momenta of the particles 
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MICROSCOPIC MOTION IN LIQUIDS 33 

lying within that radial separation at the time of interest, i.e., 

P2 = . P j ,  
j #  l . r u < r l , < r h  

where r l j  is the separation between the central particle, 1 and a neighbour of 
index, j, and N , ,  is the total number of atoms in shell 1. N , ,  will vary somewhat 
with time. (The mass of the particle is unity in the units considered here. Therefore 
the momentum and velocity of a single particle are numerically the same.) The 
cross-correlation functions between the momenta of the central particle and the 
nearest shell of neighbours is, 

As time progresses the neighbours about particle 1 lying within Y, and rb can 
change. An alternative prescription would be to maintain the same neighbours for 
each particle during the correlation process. This would cause the shape of the shell 
to distort with time from spherical symmetry at the time of origin. We do not adopt 
this latter approach, because as momentum relaxation and diffusion occur on 
disparate time scales (‘fast’ and ‘slow’, respectively) and shell will remain virtually 
intact throughout the duration of the correlation. Any attempt to maintain the same 
particles as ‘shell’ particles for each central particle during the length of the 
correlation would be an unnecessary and technically time-consuming complication. 
The momentum of shell 2 (i.e., S2), which compromised of ‘ 3 ’  atoms, is the sum of 
the component velocities within that radial separation at the time of interest, i.e., 

p j .  P 3  = 
j #  l . r h < r l , < r i  

( 3 )  

where again N , ,  is variable. The cross-correlation function between the central 
particle and the next defined shell of neighbours is, 

The advantage of following the behaviour of two shells, rather than one (as has 
been customary to date) is that it gives a better insight into the transfer of momentum 
and stress around and from the central particle. 

We also investigate the relative momentum correlation functions, 

C’”d = ((PI(0) - P 2 ( O ) ) ( P l ( t )  - P 2 ( t ) ) ) 3  ( 5 )  

and, 

C 2 3 ( t )  = ( ( P 2 ( O )  - p3(0))(p2(t)  - P 3 ( t ) ) ) .  (7) 

The definition of our shell-time correlation functions is the same as that of 
Balucani et dt3 in that we omit the central particle in our definition of the ‘shell’ 
momenta. This gives a clear separation of the relative dynamics between the central 
particle and its first shell. In particular we are able to identify the phase difference 

P.C.L. B 
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34 D. M. HEYES AND W. C. SANDERG 

in the motion of the central particle with respect to the first shell. In some of their 
papers Gaskell and co-workers have adopted an alternative definition of the first 
shell, which includes the central particle in the definition of the 

The MD simulations followed particles of mass, m, interacting via the Lennard- 
Jones, LJ, potential”, 

449 = 44(a/r)12 - (8) 
The basic technique is that used in a previous M D  The M D  simulations 
were performed on a cubic unit cell of volume V containing either N = 256 or 
N = 500. The interactions were truncated at 2 . 5 ~ ~ .  We use LJ reduced units through- 
out, i.e., k ,  TIE + T,  and number density, p = N o 3 / V .  Time is in a(m/&)1/2,  shear strain 
rate is in (E/m)1’2/a, viscosity is in (me)’i2/a2 and pressure tensor components or stress 
are in E 0 - j .  Simulations were conducted for typically 25,000 time steps of duration 
0.015 reduced time units. 

Some of the simulations had a superimposed shear flow on the dynamics. We 
used the SLLOD algorithm to impose a shear flow on the molecules20321. The 
peculiar or thermal momentum is denoted by 8. For molecular position, R, 

R ,  = px/m = px/m i- jR , /m,  

R ,  = py/m = by/m, 

Rz = pz/m = flz/m, 

where the a component of the force on a particle is F a ,  the momentum is p u ,  
the peculiar momentum is Fa (i.e., that component of the momentum in excess of 
the streaming flow momentum). We maintain constant kinetic energy (‘temperature’) 
within the Verlet algorithm using momentum rescaling applied to f i m .  In order to 
assess the stress relaxation around the central molecule, we define a single particle 
stress for our generic particle 1 (ie., each of the N particles in turn), 

where r u l j  is the a component of L~~ and V = (NIP),  the volume of the MD cell. The 
stress of the first ‘shell’, (i.e., S,) is the sum of the ‘component’ stresses within that 
radial separation at the time of interest, i.e., 

Nsi 

a2 = 1 a j .  (16) 
j #  l . r u < r l , < r h  
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MICROSCOPIC MOTION IN LIQUIDS 35 

The cross-correlation function between the 'stress' on the central particle and 
that on the first defined shell of neighbours is, 

S , 2 ( 0  = ((-Jl(O)a,(f)). (17) 

s13(t) = (a1(0)a3(t)>3 (18) 

and for the central particle on the next shell, S,, 

using, 

0, = aj.  
j #  l . r h < r i , < r ,  

We also make use of S ,  l ( t )  and S 2 , ( t )  in our discussion, 

and, 

We calculated the shear viscosity, y ~ ,  from, 

where, 

where r X i j  is the x component of rij and 1.' = ( N / p ) ,  the volume of the M D  cell. The 
state point mainly considered was a near triple point state, at p = 0.8442 and 
T = 0.722. In the sheared case, i, = 1.0, produces y~ = 2.1. This is about 30% 
shear viscosity reduction or shear thinning from the newtonian value (i.e. j + O)19. 

The stress and thermodynamic properties are governed mainly by the configurational 
(i.e., &r)) dependent terms at this state point. 

Computations were carried out in single precision on a CRAY-XMP at the 
University of London Computer Centre. 

3 RESULTS AND DISCUSSION 

At equilibrium and steady state shear we evaluated the single particle autocorrela- 

(F,(O)F,(t)). We also computed, C12(t), CI3(t) ,  CZ3(t ) ,  C,,(t), C13(t), C,,(t) ,  resolved 
into X ,  Y and Z components. The S12(t), S,,(t), S , , ( t )  are resolved into, X X ,  
Y Y ,  ZZ, X Y ,  X Z ,  Y Z  components. 

In Figure 1 we compare the normalised momentum and force autocorrelation 
functions, C,(t) and C,(t) with the relative momentum correlation function, C"(t) 
for p = 0.8442 and T = 0.722, Ij = 0, ra = 0.85, rb = 1.3 and r, = 1.6. The momentum 

tion functions, <i jx (O) i jx ( t ) ) ,  < j i Y ( O ) i j Y ( t ) ) ,  (dz(O)ij,(t)>, <F,(O)F,(t)), <F,(O)FY(t)) ,  
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Figure 1 The x component time cross-correlation functions Cp(r), solid line, C,(r), 0 and C'*(f), A. 
at the 3 0  LJ N = 256 state p = 0.8442, T = 0.722, = 0, ro = 0.85, rh  = 1.3 and rr = 1.6. The insert shows 
the corresponding real frequency transforms. The second trequency moments are, 16.1, 27.6 and 1Y.4 0.1 
respectively. 

and force autocorrelation functions first cross zero at t = 0.13 and t = 0.07, respect- 
ively. We point out several features which are evident in this figure. First, there 
is a large difference in the times at which the force and momentum autocorrelation 
functions first cross through zero, to, and to,, respectively. The minimum in the 
force autocorrelation function, facf, t,,, coincides approximately with the 'cross-over' 
through zero time of the momentum autocorrelation function, macf. The time period, 
fc,f -+ t,,, is that during which the particle is suffering a major deceleration caused 
by its close approach to the boundary of the first shell. The cross-over in the macf 
corresponds to an on average reversal of the particle's momentum from its value at 
t = 0. Following this reversal, the facf can be seen to diminish as the repulsive force 
on the particle decreases. (Incidently, this fact suggests that there is an out of phase 
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MICROSCOPIC MOTION IN LIQUIDS 37 

relative motion of the central particle and first cage, S , .  That is, the central particle 
reverses its momentum whereas the cage continues on in the original direction of the 
particle. This has been suggested by Sandberg et dZ9 in their analysis of collision 
induced absorption in liquid mixtures.) The minimum in the macf corresponds to 
the time at which the central particle has its maximum momentum in the ‘reverse’ 
direction. We note that the facf is still negative at this time. One would expect that 
the minimum of the macf would coincide with the zero cross-over of the facf if the 
cage were stationary. However, despite a reduction in the negative momentum, the 
force still would appear to act in the reverse direction (implying further acceleration 
of the impurity in the reverse direction.). This somewhat paradoxical feature illustrates 
the danger of attempting to picture single particle motion by comparing different time 
correlation functions, here the momentum and force, which weight physical events 
differently. This is illustrated well by considering the t = 0 values of the macf and facf. 
They highlight those different times in which the momentum and force, respectively, 
are at a maximum-which are almost certainly not the same points in passage time 
of the simulation. (In a simple harmonic oscillator these are at different times.) In 
fact, the only value of t when one can reasonably expect there to be a coincidence 
of ‘events’ is at t,,,. The negative minimum of the facf heavily weights those events 
when their is a strong returning force on the central particle. Therefore, it is not 
inconsistent for the facf to remain negative while the macf starts to approach zero 
after the first minimum. (For a simple harmonic oscillator, the velocity and force 
autocorrelation functions have coincident cross-overs.) Murthy and Singer have 
already demonstrated the failure of a simple harmonic oscillator model for single 
particle motion in a simple They showed, for example, that zeros in the 
acceleration are 1.5-2 times more frequent than zeros of the momentum. (In a 
harmonic oscillator these are equal in number.) The reason for this is because the 
central particle is not moving in a constant force field, but one changing through 
the significantly independent motion of the shell molecules. 

The facf eventually returns to a positive value and subsequently decreases to zero. 
We suggest that this peak in the facf is associated with the approach of the central 
particle to the opposite side of its cage. The increasing repulsive force is reflected in 
the slowing decay of the macf at t E 0.3. However, on average, the central particle 
does not appear to suffer a second reversal as can be seen by the absence of a second 
cross-over through zero of the macf. It could be that there is no momentum reversal 
during this interaction of the central particle with the first ‘shell’ because the particles 
on the opposite side of the cage are poorly correlated with those of the initial impact. 
(There is a dramatic decrease in the coherence of collisions after the first impact.) 

We now discuss the relative momentum correlation function between the impurity 
and the first shell, which is also shown in Figure 1. At  short times, ( < O . l ) ,  there is no 
discernable difference between C”( t )  and C,(t). At short times the impurity appears 
to have no overall effect on the motion of S ,  and is statistically decoupled from it. 
There are on the average 8 neighbours in S, (and 4 in S,) for the near-triple point 
state, p = 0.8442 and T = 0.722. Although the momentum transfer process begins 
close to t = 0, as shown by Balucani et al ,23-27 and continues for some time, the 
magnitude of the transferred momentum is initially insignificant due to the mass of 
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38 D. M. HEYES AND W. C. SANDERG 

the shell. Each of the 8 particles will initially have velocities uncorrelated with that 
of the central particle. At the cross-over or ‘point of impact’, t = to,, C”(t) and C,(t) 
begin to differ. The C”(t) has a shallower minimum and, in contrast to C,(t), goes 
positive again at the point when the particle is interacting strongly with the opposite 
side of S , ,  following closely C,(t) in this behaviour. This suggests that the shell is 
now moving in the same direction as the impurity, and opposite to the impurity’s 
velocity at time t = 0. Therefore we suggest that the cage reverses its direction at a 
time t N 0.3. This reversed motion of the shell acts, in addition, to decrease the relative 
separation of impurity and cage, causing the slow return of the macf, C,(t) towards 
zero. The shell, S,, niomentum is greater than that of the central particle when the 
central particle starts to interact strongly with the opposite side of S , .  The cage has 
a momentum in excess of the central particle as the central particle moves through 
the centre of the cage towards the opposite side of S,. A positive region in C’’(t) is 
the consequence of this and is consistent with the slow return to zero noted for C,(t). 
The insert of Figure 1 shows the power spectra of these correlation functions, c,(w) 
obtained using Filon’s method28. The second frequency moment for this figure (given 
in the caption) are, 

The main feature of interest in this figure is the near coincidence of the z“’(w) and 
C,(o) at high frequency, w > 25. As the corresponding time correlation functions are 
coincident until t = 0.1, this is consistent with the correspondence that ‘short-time’ 
is equivalent to ‘high-frequency’. We note that the dominance of the short time region 
of the correlation function extends to high frequencies, back almost to the spectral 
peak. The zero crossover time have been used in estimating the location of the spectral 
peak associated with the dipole moment autocorrelation function.29 

In Figure 2(a) we show the x, y and z components of the momentum transfer 
cross-correlation function, (MTCCF), C ,  ’(t), the product of central particle and first 
shell particle momenta. Our definition of C,,(t) is the same of Balucani et ~ 1 . ’ ~  in 
that we omit the contribution of the central particle to the shell’s momentum i.e., 
the macf component, ( p,(0)pl(t)), to C ,  ’(t). However, unlike Balucani et al.’ 3, we 
have not corrected for the effects of the fixed momentum of the MD cell. (This results 
in a small non-zero value for C,,(O), evident in this figure. The maximum effect of 
this is at t = 0.) The momentum transfer to the first shell rises sharply and peaks at 
f = 0.12, just prior to the zero cross-over in the macf. The subsequent decrease 
in C,,(t) reflects the transfer of momentum from the first shell, S ,  to the second shell, 
S ,  and beyond. The zero cross-over occurs at t = 0.28, when the shell S ,  reverses its 
direction. This is consistent with our conclusions based on C1’(t). We note that C , , ( f )  
remains negative certainly until t - 0.9. As suggested above, we infer that this negative 
momentum of the shell prolongs the ‘negative’ regime of the macf, (i.e., C,(t) E C ,  , (r)) .  
The insert in Figure 2(a) compares the x-component of C, , ( t )  for two system sizes, 
N = 256 and N = 500, revealing a statistically small N-dependence in this function. 

We present C,3(t) in Figure 2(b), which is the momentum transfer cross correlation 
function between shells, S,, and S , ,  for the state point p = 0.8 and T = 1.9. This 
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Figure 2(a) The time cross-correlation functions C, , ( t ) ,  for the x, solid line, y. o, and z ,  A components 
at the 30 LJ N = 256 state p = 0.8442, T = 0.722, Q = 0, ro = 0.85, rh = 1.3 and rr = 1.6. The insert shows 
the x component of C, , ( t ) ,  for N = 256, solid line, and N = 500, 0. 

function reveals aspects of the transfer of momentum through the first coordination 
shell around a test particle (i.e., from S ,  to S,) .  In the insert to Figure 2(b) we also 
show C,(t) and C , , ( t )  for the same state point. We note that at this lower density 
state point, there is no negative lobe in the MTCCF at T N 0.3. Instead C,,(t) and 
particularly, C,,(t), have a long time positive tail, reflecting less efficient back- 
scattering of the component particles between each cage. A comparison with C,,(t)  
from the p = 0.8442 and T = 0.722 (Figure 2(a)) state point demonstrates the shells 
transmit (rather than reflect) more of the momentum at p = 0.8 and T = 1.9 (Figure 
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Figure 2(b) The C,,(t) for the x, solid line, y, 0, and z, A components at p = 0.8 and T = 1.9. The 
insert shows the x-component of C,(t) and C,,(f). 

2(b)). Figure 2(c) compares C13(t) and C23(t)  for p = 0.8442 and T = 0.722. C,,(t) 
in comparison with C,,(t) does not have a negative lobe at t z 0.3. The momentum 
from shell 2 is less efficiently backscattered from shell 1 than is the momentum of 
the central particle from shell 1. C,, manifests a peak at t = 0.3 reflecting the passage 
of momentum from the central particle through shell 1 to shell 2. 

As we consider the functions CI2(t) and C,,(t), we lose progressively more direct 
information about the dynamics of the central particle. They inform us more about 
the effect of the central particle on the ‘state’ of the surrounding shells of atoms. This 
trend is continued in the function, C,,(t), the shell-shell correlation function calculated 
for the first time here. An example of C,,(t) is shown in Figure 3,  for the near triple 
point state point. S,’s  initial momentum decreases largely as the macf until r - 0.2, 
when a ‘shoulder’ appears on C,,(t), indicating a slowing down of the momentum 
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Figure 2(c) A comparison between C,,(tl (0) and C,,(t) (A) for p = 0.8442, T = 0.722. p = 0. 

relaxation of the shell. Of all particles, the central particle will have the most influence 
on the shell, S, ,  because i t  is on average nearest to each shell 1 particle. The motion 
of the central particle within its cage imposes an  additional correlation time on the 
fluctuations of the shell, at times corresponding to  the ‘collision’ time of the particle 
with S, ,  which we can extract from the macf. (The direct transfer of momentum to 
the cage we consider to be insignificant in this process.) As the central particle 
oscillates between the centre to the boundary of its shell, the shell experiences a 
variation in potential energy, suffering periodic accelerations and retardations of its 
dynamical evolution. Note that we cannot be certain where the central particle is at  
the point of the shoulder in C,,(t), but suggest that it is in the middle of the shell- 
so that it will slow down the dynamics of the whole shell uniformly at  this position. 
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Figure 3 The time cross-correlation functions, x components, c,(t), solid line, C,,(t), 0 and C,,(t), A. 
at the 3D LJ N = 256 state p = 0.8442, T = 0.722, = 0, ra = 0.85, rb = 1.3 and r c  = 1.6. 

The second shell momentum autocorrelation function, C,,(t)  (shown also in Figure 
3) decays even more rapidly at short time than, C2,(t)  because its more abundant 
neighbours hasten the momentum transfer process. Only slight evidence of a shoulder 
appears near t = 0.3. This suggests that the modulation of the dynamics of the second 
shell, S 2  atoms, portrayed in C,,(t), is considerably reduced over that in the first shell, 
S , .  This is reasonable, as the second shell is further away from the central particle 
than the first shell and its dynamics are therefore influenced primarily by its nearest 
neighbours, namely the first and third shell atoms around the central particle. This 
is consistent with the C23(t) results shown in Figure 2. 

We now consider the normalised relative momentum correlation functions, C' 2(t), 
C13(t) and CZ3( t )  in Figure 4. Here we investigate the motion of the central particle 
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I I 

0.E 

0.6 

0 .‘i 
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0 0.2 0 .Y 0 .G 0.8 1 1.2 3 .LL 

t 
Figure 4 The time cross-correlation functions, x components, C’’(t), solid line, CI3(r), 0 and Ct3(r), 
for the same state point as for Figure 1-3. The insert shows the x component of CI2(r), for N = 256, solid 
line, and N = 500, 0. 

with respect to its shells, S ,  and S,, and with the two shells with respect to one 
another, respectively. These three functions are statistically indistinguishable at times, 
t < 0.13. The C”(t) and CZ3(t) agree essentially over the entire time span. This is 
macf, which indicates the modulation of the shell dynamics by the quasi-oscillations 
the ‘13’ particle combinations are much further apart, as noted above. We have 
already discussed C’*(t) and it only remains for us to interpret the distinct features 
of CI3(t) .  A11 of these functions go negative at a time -0.15, reflecting (at least initially) 
principally a reversal in the momentum of the central particle. This behaviour is 
manifest in the C13(t) at a later time. There is no return to positive values for C”(t), 
as it has a long time negative tail. This suggest that there is no reversal of the 
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44 D. M. HEYES AND W. C. SANDERG 

momentum of shell 2 since its reversal would lead to a positive region in C13(t). The 
long time tail in C”(t) is, not surprisingly, taking on the form of the macf at long 
times therefore. In fact, for rc + co we have C13(t) + C,(t). This is because the further 
removed the shell is from the central particle, the less correlation there is between 
them. The relative momentum then simply becomes the momentum of the central 
particle.) In order to show that the structure in C12(t) is not a simulation artefact, 
computations were carried out for N = 500 as well as N = 256. The C12(t)  from 
these simulations are presented in the insert of Figure 4. The second positive peak 
in this function is still pronounced for N = 500, thus vindicating the method and 
parameters. 

We now report our investigations of the relaxation of the stress about the central 
particle. (Momentum correlation functions give limited information as the ‘angular’ 
and ‘longitudinal’ fluctuations of the cage are not resolved.) In Figure 5 we show 

0 .a 

0 -6 

n 
0.4 L 

u 
0 

0.2 

0 

0.2 0 .4 0 -6 0.8 1 1.2 1 .LI 

1 
Figure 5 The time cross-correlation functions, X Y  components of, S, : ( t ) ,  solid line. S,  , (f) ,  0 and S z 2 ( f ) .  
A for the same state point as for Figure 1-3. The insert shows the corresponding X X  components. 
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MICROSCOPIC MOTION IN LIQUIDS 45 

the XYcomponent of the normalised S ,  , ( t ) ,  S,,(t) and S , , ( t )  for the near triple point 
state point. The single particle stress-stress autocorrelation function, S ,  l(t), shows 
evidence of the cage-rebound, which is absent in S,,(t). The S,,(t) follows the macf 
in form (but does not go negative), indicating that at short time the stress relaxation 
is ‘radial’ rather than ‘reorientational’, as has been ascribed to long time shear stress 
relaxation”. Only the magnitude of the stress changes, through the d+(r)/dr term in 
Eq. (15). The reorientational term is probed through the x t j y l j  component of Eq. 
(15), which we propose does not change significantly on this time scale. The 
surrounding atoms do not significantly change in relative orientation during the time 
scale of the macf. S , , ( t ) ,  on the other hand, has a deep negative minimum at t = 0.29. 
This indicates that the central particle’s shear stress, and the cage, S, ’ s  stress, change 
sign as the central particle ‘oscillates’ in its (moving) cage. Figure 5 also shows 
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\ J  
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Figure 6 
and for 

The time cross-correlation functions, X components of, Cp(fJ, for )j = 0, solid line, for j = 1, 0 
= 2, A for the same state point as for Figure 1-3 with N = 256. 
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46 D. M. HEYES AND W. C. SANDERG 

that S, , ( t )  is similar to S1 l(t) at short time but lacks the peak at t N 0.3, demonstrating 
(yet again) the reduced influence of the central particle on shell 2 when compared to 
its influence on shell 1. 

The superposition of a shear flow can have a dramatic effect on the single-particle 
dynamics if the response is noticeably non-Newtonian. We consider a range of shear 
rates, 3 which cause the fluid to depart from being a Newtonian liquid (3 + 0) to being 
approximately up to 50% shear thinned, i.e., for 3 = 0, 1, 2 we have q = 3.5, 2.1, 
1.619. An example of the effect of the shear on the peculiar macf for 3 = 0, 1 and 2 
is shown in Figure 6. It indicates that the shear flow progressively reduces the 
backscattering of the central particle (which is hardly evident at  3 = 2). This appears 
in the progressive diminution of the negative lobe in the macf as shear rate 
increases. 

0.5 

0 .Y 

0.3 

2 
0 
I 0.; 

0.1 

0.2 0.4 0 -6 0.8 1 1.2 I .u 

Figure 7 The time cross-correlation functions, x components of C12( t ) ,  for j = 0, solid line, for j = 1, 0 
and for j = 2, A for the same state point as  for Figure 1-3. The insert shows the components, x, solid 
line, y, 0 and z, A for the C, , ( t ) ,  d = 2 and N = 256. 
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MICROSCOPIC MOTION IN LIQUIDS 41 

In Figure 7 we show the x component of the momentum transfer cross-correlation 
function, C,,( t ) ,  for i, = 0, 1 and 2.  It indicates that as the shear rate increases less 
momentum is transferred to the first shell at short time (i.e., t < 0.2) and that there 
is a slowly damped decay of momentum transfer at longer times (which is not there 
at i, = 0). This is consistent with a distorted first shell, S , ,  of ellipsoidal shape with 
its principal axis at approximately 45" to the x and y axes. The first coordination 
shell loses its spherical symmetry and provides a less well-defined cage for central 
particle collisions. The central particle has further to travel along the principal axis 
of the ellipsoid, but less time along the short axis of the ellipsoid. There is therefore 
in a shear field a greater spread of collision times. The times to the peaks of the 
momentum transfer function C, , ( t )  for i, # 0 are slightly less than that for the 
i, = 0 case. The momentum transfer appears in the i, # 0 case to be occurring first 

1 

0 .a 

0 -6  

0.4 

0 .2  
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0 0.2 0 .Y 0.6 0.8 1 1 . 2  1 .II 

3 

Figure 8 The time cross-correlation functions, x components of C12(t), for $ = 0, solid line, for $ = 1, [7 
and for $ = 2, a for the same state point as for Figure 1-3. The insert shows the components, x, solid 
line, y, 0 and z ,  A for the C,*(t) ,  = 2 and N = 256. 
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48 D. M. HEYES AND W. C. SANDERG 

primarily along the minor axis of the distorted ellipsoidal S , .  The central particle, 
while moving down the length (minor-axis) of the ellipsoidal shell, will encounter its 
‘sides’ sooner than from the original spherical shell. This time will decrease with 
increasing 3, as the ratio of the major-to-minor axes increases, i.e., the sides get closer 
to the central particle. The decrease in magnitude of the transferred momentum 
suggests the motion is, on the average, more probable along the major-axis. There 
is evident a long-time tail in the x component of C,,( t ) ,  which increases with shear 
rate, which we attach to collisions with S, along the major axis. Note that the heights 
of the peaks of C, , ( t )  decrease with increasing j ,  reflecting this spread of collision 
times. 

The insert of Figure 7 shows the x, y and z components of C. ,” )  at j = 2. The 
diminution in the intensity of momentum transport between the i,.,purity and S, is 
similar in all directions because the first shell particles are ‘stretched’ around a surface 
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Figure 9 As for Figure 8, except the time correlation functions, x components of CZ2(t) ,  are given. 
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MICROSCOPIC MOTION IN LIQUIDS 49 

of greater surface area when the first shell is distorted from a spherical shell to an 
ellipsoid. Even along the contracted minor-axis, ‘hard’ collisions occur less frequently 
than collisions in the spherical S , .  

= 0, 1 and 2, which has the 
overall appearance of C,(t) for the same states. The insert gives the three Cartesian 
components of C12(t) for 7 = 2. This figure shows clearly that there is severe reduction 
in the number of velocity reversing collisions in a shear thinned fluid. This is perhaps 
the microscopic origin of the increase in diffusion coefficient with increasing shear 
rate. Also the insert of Figure 8 shows that the three Cartesian components of C12(t) 
are statistically different. This is because the shear flow field causes structural 
distortion to occur in the fluid that is different in the three Cartesian directions. 

In Figure 9 we show C22(t)  for 3 = 0 , l  and 2. There is a comparitively long-time tail 
for 3 = 1 but not for higher shear rates, illustrating the complex dynamical relaxation 
induced as shear rate increases. The distinct shoulder at t - 0.2-0.3 evident at 3 = 0 
disappears at the finite shear rates considered here. The insert gives the three Cartesian 
components of C22(t)  for 3 = 2. Figure 9 illustrates that the central particle has a 
strong influence on the dynamics of its cage (Sl, here) for longer times as shear rate 
increases, resulting from the wider spread of collision times between the central 
particle and its surrounding cage of atoms (i.e., in SJ. 

In Figure 8 we show the x-component of C”(t) for 

4 CONCLUSIONS 

In this work we have brought out some new features of the interaction between 
a particle and its surrounding first shell of neighbours in the liquid state. We show 
that beyond the first minimum of the vacf, the first shell is moving faster than the 
central particle in the same (‘reverse’) direction. We show that the first shell 
momentum autocorrelation function has a shoulder beyond the first minimum in the 
macf, which indicates the modulation of the shell dynamics by the quasi-oscillations 
of the central particle contained within it. The short time dynamics (t  < 0.2) is 
governed by correlated backscattering collisions with a persistence of the initial vector 
betweeen the pair colliding. At longer times there is a transition to a hydrodynamic 
regime in which the vector changes more rapidly than the scalar distance between 
the pair. 

The effect of shear is to spread out the range of collision times between the central 
particle and the first shell. The effectiveness of the momentum transfer to the particle’s 
first shell is also reduced. This is manifest in a disappearance of the minimum in the 
macf and a smaller peak and ‘spreading out’ of the momentum transfer cross- 
correlation function. 
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